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Abstract

A method is presented for computing stea-
dy inviscid transonic flows with and with-
out detached bow-shocks in turbomachinery
cascades, wherein both subsonic and super-
sonic regions co-exist. A finite difference
method based on the small disturbance for-
mulation of the non-linear problem is used.
Different finite difference equations which
are appropriate to the behaviour of the dif-
ferential equation at each mesh point are
formulated. Weak shock structures are per-
mitted to develop as a part of the solution
process, without prior knowledge of their
exact strength and position.

To take into account viscous effects,
the displacement thickness of the boundary
layer is added to the blade contour.

A variation of the basic procedure is
used to solve the inverse problem to design
airfoil contours for given pressure distri-
bution.

The computed surface pressure distribu-
tions for given airfoil shapes agree well
with experimental results.

Introduction

The design and development of turboma-
chineries require three-dimensional solu-
tion to the flow field internal to rota-
ting and stationary cascades. 1950, Wu
proposed to solve the flow equations on
seperate orthogonal quasi-two-dimensional
surfaces in space.(l) Solution techniques
suitable for the S2 (radially oriented sur-
faces) appeared rather quickly. The blade-
to~-blade solutions have been achieved some-
what more slowly. A subsonic relaxation
technique utilizing the stream function
equation was proposed by Wu and developed
by Katsanis and McNa].ly.(2 The difficulty
of this approach lies in the restriction
to uniformly subsonic Mach numbers and that
the reduction of derivatives of stream
function to velocities and densities is
double-valued with Mach number. No such
ambiguity arises if the dependent variable
is selected to be the velocity potential.
Murman and Cole developed a relaxation
technique capable of rapidly and efficien-
tly handling local areas of supersonic
flow around isolated airfoils. The
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method is pased on the realization that one
must vary the difference star to match the
characteristics of the governing differen-~
tial equations. Dodge used this technique
to predict deviation angles and optimum
angles of attack for cascades in transonic
flow fields with subsonic inlet velocities.

Extension of the method to cascades in
flow fields of upper transonic region with
supersonic inlet velocities, comparison of
data, and limitations of the approach are
topics discussed here.

Theoretical Considerations

Assumptions

Due to the very complex nature of the
real flow in a turbomachine, it is necessa-
ry to make some simplifying assumptions
about the fluid and the cinematic beha-
viour of the flow under consideration.
Therefore, the following hypothesis are
made for the analysis to follow.

- the flow is considered steady relative
to the blade

~ the flow is two-dimensional

- the blade-to-blade surface is a surface
of revolution

-~ the velocity normal to the blade-to-
blade surface is zero

- the fluid is‘nonviscous
- the fluid is isoenergetic

- the velocity magnitude and direction is
uniform across the upstream and across
the downstream boundaries

- the effects of viscosity are only taken
into account to calculate the boundary
Layer displacement thickness and the
shock/boundary layer interactions

- the vorticity created by the shock wave
is ignored herein.

Governing Equations

The basic differential equations of
transonic flow are sufficiently well known
that a derivation is unnecessary; and,
therefore, they will simply be stated in



the form used.

The transonic small disturbance equa-
tion is derived as a part of a systematic
expansion procedure applied to the exact
equations for steady, inviscid, isentropic
flow.

div (pV)
(v grad) v

continuity eq. 0 (1)

—% grad p (2)

Euler eq.

I

P k oY

where V is the velocity vector, p the
density, p the pressure, k a constant of
proportionality, and vy the ratio of speci-
fic heats.

isentropic rel. (3)

The result is the transonic small per-
turbation potentiel equation (rpE) {4) ., (5)

(K- (y +1) ¢x ) ¢xx + ¢§? =0 (4)
or alternatively

-y +1 .2 =
( X ¢x 3 ¢x )x + ¢§y =0 (5)

¢§X - ¢X‘§ =0

with the velocity components u and v in
x- and y-direction
o, = u o =V (6)
and

1 - 2,,1/3
K = ¥ = (M6) "y (7)

M"Zo 62/3 ©

The shock jump conditions must be added
to the system 5 to form a complet set of
equations. However, it turns out that the
shock jump conditions are contained in
system 5 in the following sense. If their
differential equations are integrated
across a jump in (u, v), the correct shock
relations, to this order, result. That is,
each equation in 5 is in conservation form.
The corresponding surface integral forms
give the shock jump relations

[xe, - 132 62] @, - [0, ]tan, = o (@
[o;] @n_ + [o,]1an_ = o
where
[] = Jump = ( )downstream - )upstream

() _=
s

element in the shock surface
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The two systems of equations 5 and 8 are
to be solved numerically for a cascade geo-
metry such as is shown in figure 1 and sub-
ject to the following boundary conditions.

Boundary Conditions

The computational domain shown in figure
1, is composed of two channels between
three adjacent blades. Upstream and down-
stream of the blading, as the stream-lines
are not known, the periodic boundaries are
drawn in the direction of the cord of the
profils and fluid is allowed to cross these
boundaries. The flow conditions at these
boundaries are the same as those at the
equivalent lines upstream and downstream
of the central profil. Thus they may be
adjusted in a correct manner step by step
as the solution progresses.

The inlet boundary AB is parallel to
the slope of the lower profil's detached
bow shock at the upper periodic boundary.
Thus its position and inclination must be
updated during the iteration process to
fulfil the condition of periodicity, too.
(The form and position of the detached bow
shock is a part of the solution). The out-
let boundary is chosen to be sufficiently
far away from and parallel to the outlet
of the cascade so that the conditions along
EF may be considered uniform.

On the rigid boundaries of the profil
surfaces the wall tangency condition

3¢/3n = 0 is given in the form :
¢?(x) = F'(x) - i/6 (9)
where the body shape is given as $=8F(x).

1f a case with circulation is considered,
the Kutta condition that the flow leaves
the trailing edge smoothly must be applied.
This implies a jump of potential across the
x-axis downstream of the profil. This jump
is related to the circulation around the
airfoil, which is unknown in advance.

These boundary conditions in relation
with the transonic small perturbation equa-
tion define a presumably unique solution.

Axial velocity ratio

The axial velocity ratio

Py Vp sin B, (10)
&= V., sin 8
P1 N 1
has an important influence on the flow-
field in a turbomachinery cascade.
With the velocity
_ ‘/ 2 2
vV = o, *+ ¢§ (11)



the flow angle

2 2
sin = ¢ + o (12)
B = oo/l 0% + o
and the density ratio
1 1
o P, ¥ 1+ X2 5T
2 2 2 2
e (5_) = T+ 2 (13)
1 1 1+ = Ml

the small perturbation approximation of
the axial velocity ratio becomes

ES
d P Y
Q = 5—2 (=) (14)
y1 1
1
Y+1 2]~ -
_ ¢.§2 - 1+ > M2 v-1
"o, y+1 2
¥1 1T+ 5 Ml

During each step of iteration the va-
lues of ¢§2 are updated according to

¢§2 =¢?l-9/const. (15)

This correction has the effect of a
fictitions downstream pressure

+
“5 real Apz fict) taking into account the
pressure-forces on a volume between two
non-parallel streamsurfaces (figure 3).

Numerical Solution

Finite Difference Schemes

The mixed differencing relaxation sche-
me for solving transonic boundary value
problems was introduced by Murman, Cole
and Krupp to treat the small disturbance
formulation for nonlifting and lifting
airfoils. (4),(5) Most of our calculations
are obtained using unequally spaced grids
but in the following, for simplicity, we
confine our discussion to evenly spaced
grids. More details are given in the cited
references. (4)~(8)

The important type-dependent feature of
the method is that, in subsonic flow re-
gions central difference operators are
used to account for the domain of depen-
dence of elliptic equations. In supersonic
flow regions, backward difference opera-
tors are used to account for the absence
of upstream influence in hyperbolic equa-
tions.
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For the rectangular grid structure shown
in the figures 1 and 2, equation 4 can be
approximated using a second-order accurate
central difference operator for a point
i,j in a subsonic flow region.

¢ =6, .
i+l,3 i-1,3
[K -y + 1) ( b )} (16)
[ Ping Pt e i—l.j}
(Ax) 2

»r[‘1’:'L,3'~L1'2‘1”i,3'2+ ¢m‘—l} - 0
152

The operator is stable by linear stability
analysis if the coefficient

g,

(Ve:Le)ij =K - (y+1) « AR

(17)

is positiv.

Similarly, an implicit, first-order
accurate backward difference operator may
be written for a point i,j in a supersonic
flow region.

6. =0, . .
{K - (y+ 1) (—#95——112—'—3)} (18)

Ax
i'zlj }

‘bi,j-—lj] = 0

[ 91,9 24,y
(ax) 2

- +
. I‘*’ 1t 205,

(83) 2

The operator is stable by linear stability
analysis if the coefficient

®i,3 "%10,3

(Velh)i’j =K - (y+ 1) ( 3hx

) (19)

is negativ.

During the iteration procedure (Vele)ij
is computed at each grid point. If '
(Vele),j > 0 the flow is subsonic and the

i,

elliptic operator (eq. 16) is used. If
(Vele)ij < 0 and (V’elh)i j< 0, the flow

is supersonic and the hyperbolic operator
(eq. 18) is used.



As the flow accelerates through sonic
velocity from subsonic to supersonic velo-
cities, a point exists where (Vele)i j< 0

'

and (Velh)i j> 0 and neither equation 16

nor equation 18 is stable. A parabolic digﬂ
ference operator is used for such points.(

T2yt

(892

i,3+1

= 0 (20)

As the flow decelerates through sonic
velocitiy from supersonic to subsonic flow,
a point exists where (Vele)ij >0 and

(Velh)ij < 0 and both equation 16 and

equation 18 are localy stable. Murman's
"shock-point operator" is used for such
points.

b0 o2, o, )
(Vele), ; irl.d 1'32 il {21)
! (8x)
vern) | - @372y v o)
(ax) 2
. i T2 5t 50 0
(a3 2

Murman has shown that this operator, whose
x-differences are the sum of the x-diffe-
rences of the elliptic and hyperbolic ope-
rators, will give the correct weak solution
to equation 5. He has further shown that,
in the limit of vanishing grid spacing,

the correct shock jumps are obtained for
oblique shocks when arbitrary grid spacing
is used. For shock waves that jump from
supersonic to subsonic velocities the jump
is spread over three mesh points. When the
flow downstream of the shock is supersonic
the dissipation errors dominating the first
order accurate hyperbolic operator smear
the shock over six to ten mesh points.

The circulation T which satisfies the
Kutta condition must be obtained as a part
of the solution process for ¢. A cut down-
stream the central profil is introduced
at y = 0, x > 1 across which the potential
jump must equal the circulation I'. Modified
difference operators for %y are written
that take into account the jump in ¢ across
the cut while maintaining the continuity of
% and ¢§. The standard three point cente-
red difference formulas become

(¢§§)jqo R
1

Z..;E [(¢i,l T =20 0 ¢i,-1]

(22)
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'A~_2 [4’1,2 20t 0 5 Fi)} (23)
Y

The points (i, 0 + ) are not included in the
computation, since ¢i,p + is determined
from the computed value for ¢; - and the
value of T; . The iteration procedure for
finding the proper circulation proceeds by
choosing an initial circulation I'g from
which the outlet-boundary solution is ob-
tained. The circulation at the trailing
edge is found from the jump in ¢. On each
iterative sweep of the grid a new value of
I'te is found by linearly extrapolating
the ¢'s from above and below. The new T,
along with I'g is used to determine the

If by interpolation. As the iteration pro-
ceeds, new estimates for ' g are made,
until a converged solution for ¢ is obtai-
ned.

Computational Procedure

In the operation of a compressor cascade
with slightly supersonic relative inlet
Mach number, it is known that there is a
unique incidence aig?ciated with the given
inlet Mach number. The exit angle de-
pends upon the blade circulation which, in
turn, is fixed by the Kutta condition.
Thus, neither the inlet nor the exit angle
are known a priori for the usual transonic
compressor operation. The only independent
variables of the flowfield are the inlet
Mach number and the static pressure ratio.
The problem is then to find the entire
flowfield for a given cascade geometry,
the inlet Mach number and the static pres-
sure ratio or the inlet-outlet velocity
ratio. The inlet and outlet angles must be
computed as a part of the solution,

A channel for the flow is defined as
shown in figure 1. For subsonic inlet velo-
cities the inlet boundary of the computa-
tional domain is taken to be parallel to
the inlet of the cascade. The magnitude
and direction of the velocity is known
there. In the triangle ABB the ¢4~ and
¢¥ - values are constant.

For supersonic inlet velocities the in-
let boundary is parallel to the slope of
the lower profil's detached bow shock at
the upper periodic boundary. Thus, an ite-
rativ process has to be used to specify
this boundary as a part of the solution.
To find a first guess the form of the deta-
ched bow shock is calculated for an isola-
ted profil using Murman's method for the
flowfield calculation and Levine's method
for the determination of the inlet flow
angle. {7),(10) This flowfield is superpo-
sed to construct the first approximation
of the flowfield in the cascade. The ¢,-



and ¢g - values of the upper part of the in-
let boundary (line 7-B in figure 4) are
found by linear extrapolation of those at
the boundary A-4, which is equivalent to
the bow shock section 6-10. The periodicity
of the stand-off distances of the shocks
and the distances between the shocks are
verified at the periodic boundaries and

the grid lines in front of the central pro-
fil. Every tenth step of iteration the in-~
let flow angle is updated. If the inlet-
outlet velocity ratio is known the axial
velocity ratio is used to determine the
exit flow angle. Thus, via the Kutta con-
dition the circulation is prescribed. For a
given static pressure ratio, both axial ve-
locity ratio and Kutta condition are neces-
sary to calculate the magnitude and the di-
rection of the flowfield at the outlet.

Results and Comparison with

Experimental Data

The method outlined in the foregoing has
been applied to the flow through several
cascades. The geometries of the cascade,
the profils and the inlet and outlet con-
ditions have been chosen so that the re-
sults can be compared with experimental
data. The profil geomctries as well as the
cascade data are reported in detail in the
references 1lla - 12,

To obtain good agreement with the expe-
rimental data the boundary layer displace-

ment thickness has been calculated to cor-
rect the profil shapes. For the shock boun-
dary layer interaction Melnik's small per-

turbation approximation of Reshothko-
Tucker's theory was used. (13)

Figure 5 shows the computed pressure
distribution for a cascade with Do-Al
profils. For this low cambered 11 percent
supercritical profil excellent agreement
has been obtained for subsonic inlet velo-
cities and small deviation angles.

In figure 6 the numerical results for a
high cambered, 5.9 percent DCA 48 cascade
are compared with experimental data of re-
ference 1llb. For the two presented inlet
angles the agreement of the results down-
stream of the shock suffers from the simple
shock boundary layer interaction model used.

For supersonic inlet conditions a low
cambered, 4.66 percent DCA 9.5 profil with
9.570 camber angle has been chosen. In the
figures 7 to 11 results for different pres-
cribed inlet and outlet Mach numbers are
compared with the data of reference lla.
The calculated unique incidence for this
cascade geometrie is shown in figure 12.
The axial velocity ratio used to compute
the outlet angles are reported on the
graphs.

For shock Mach numbers higher than 1.4
the shock boundary layer interaction is not
simulated in a correct manner so that there
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is a small lack of agreement between expe-
rimental data and computed values down-
stream of the shock. But in general the
agreement of the velocity and pressure
distribution and the flow angle prediction
is rather good.

Conclusion

The transonic relaxation method descri-
bed has proved to give apparently accurate
and usefull results if the non-viscous cal-
culations are combined with a boundary
layer calculation. The boundary layer dis-
placement effects must be included to
obtain accurate results aft the shock and
to eliminate irregularities at the trai-
ling edge. Due to the simple shock boun=
dary layer interaction model used the sur-
face pressure gradients across the shock
jumps are slightly steeper than in reality.

The results are obtained using between
1/20 and 1/50 the computer time of the
time-dependent methods while avoiding the
problem of shock smearing. The extension
of the method to three-dimensional flow
seems highly promising because of the
small CPU-times for two-dimensional cases.
Indeed, for wing-body combinations Schmidt
and Vanino have already calculated three-
dimensional flows using this method.

(14), (15).

The major difficulty of the method rests
with its restriction to thin, low-cambered
profils and in the lack of defining exact
locations of oblique shocks. But, with
adequate mesh refinement the location of
weak obligue shocks may be sufficiently
well defined.
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Geometry of the DCA-9,5-Cascade

Profil : double circular arc
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